Defect Microstructures and Deformation Mechanisms in Irradiated Austenitic Stainless Steels

Author:

Bruemmer S. M.,Cole J. I.,Carter R. D.,Was G. S.

Abstract

AbstractMicrostructural evolution and deformation behavior of austenitic stainless steels are evaluated for neutron, heavy-ion and proton irradiated materials. Radiation hardening in austenitic stainless steels is shown to result from the evolution of small interstitial dislocation loops during lightwater-reactor (LWR) irradiation. Available data on stainless steels irradiated under LWR conditions have been analyzed and microstructural characteristics assessed for the critical fluence range (0.5 to 10 dpa) where irradiation-assisted stress corrosion cracking susceptibility is observed. Heavy-ion and proton irradiations are used to produce similar defect microstructures enabling the investigation of hardening and deformation mechanisms. Scanning electron, atomic force and transmission electron microscopies are employed to examine tensile test strain rate and temperature effects on deformation characteristics. Dislocation loop microstructures are found to promote inhomogeneous planar deformation within the matrix and regularly spaced steps at the surface during plastic deformation. Twinning is the dominant deformation mechanism at rapid strain rates and at low temperatures, while dislocation channeling is favored at slower strain rates and at higher temperatures. Both mechanisms produce highly localized deformation and large surface slip steps. Channeling, in particular, is capable of creating extensive dislocation pileups and high stresses at internal grain boundaries which may promote intergranular cracking.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference27 articles.

1. 27. Bruemmer S. M. , Cole J. I. and Simonen E. P. , Corrosion 97, NACE, Paper 103, in press.

2. 25. Song S. G. , Cole J. I. and Bruemmer S. M. , accepted for publication in Acta Metall., 1996.

3. Post-irradiation deformation characteristics of heavy-ion irradiated 304L SS

4. 23. Cole J. I. , Biimhall J. L. , Vetrano J. S. and Bruemmer S. M. , PhD Thesis, Washington State University, 1996 17, p. 817.

5. DEFORMATION STRUCTURE OF NEUTRON‐IRRADIATED COPPER‐ALUMINUM ALLOY

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3