Diamond synthesis from vapor phase and its growth process

Author:

Setaka Nobuo

Abstract

Diamond synthesis from the vapor phase has been studied using hot filament assisted CVD, microwave plasma assisted CVD in an open system, and chemical transport process in a closed system using a gas mixture of hydrocarbon diluted with hydrogen gas. The deposited materials were identified as a cubic diamond with x-ray diffraction and Raman scattering measurement. The deposition process of diamond was considered on the basis of these experimental results and a review of the relevant field. The results suggest that the diamond synthesis proceeded by the deposition process, with the etching process operating simultaneously, and that atomic hydrogen played a very important role as the etching agent for non-diamond carbon. Also, the deposition process would be considered as the method that utilizes the bonding energy difference on each crystal surface of the diamond. The complicated problems on diamond synthesis originate from the fact that a third allotropic form exists in carbon, that is, the carbyne group.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference20 articles.

1. 19 Yugo S. Kanai H. Tanaka H. Kimura T. Yukizane S. Ono A. and Adachi Y. Tanso Gatsukai Annual Meeting (1980).

2. Growth of diamond thin films by electron assisted chemical vapor deposition

3. Graphitization of diamond at zero pressure and at a high pressure

4. 16“Selected Value of Chemical Thermodynamical Properties,” National Bureau of Standards, Technical Note, 270–273 (1968).

5. REACTION KINETICS OF HYDROGEN ATOMS WITH CARBON FILMS1

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3