Author:
Ghandehari M. H.,Brass S. G.
Abstract
Combinations of inert atmosphere sintering and oxygen atmosphere sintering have previously been reported as necessary for the synthesis of LaBa2Cu3Oy superconductors which achieve zero resistance at temperatures above 90 K. Sintering under oxygen atmosphere only is known to produce La(1+x)Ba(2−x)Cu3Oy, in which La is substituted for Ba in the crystal lattice. The latter substituted compounds achieve zero resistance at temperatures well below the boiling point of liquid nitrogen. In this work, we show that during the initial inert atmosphere sintering step, LaBa2Cu3Oy powder decomposes, in part, into several intermediate compounds. These compounds are then recombined in the subsequent oxygen atmosphere sintering step to form LaBa2Cu3Oy, which achieves zero resistance at temperatures above 90 K. We propose that the net effect of these two processing steps is to inhibit the substitution of La for Ba in the lattice of the fully processed material.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献