The formation mechanism of planar defects in compound semiconductors grown epitaxially on {100} silicon substrates

Author:

Ernst F.,Pirouz P.

Abstract

Films of three compound semiconductors with the zincblende structure grown epitaxially on {100} silicon substrates by chemical vapor deposition or metal-organic chemical vapor deposition were investigated by transmission electron microscopy. The three systems have similar thermal mismatches but cover a wide range of lattice mismatch. From the comparison of the observed microstructures as well as from the investigation of early stages of film formation it is concluded that the lattice mismatch plays a minor role in the formation of stacking faults and twin boundaries. A formation mechanism is proposed for these defects which is based on deposition errors during the adsorption of atoms on {111} facets of film nuclei. The observed microstructural features are discussed in terms of this model.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of Doping on Cross-Sectional Stress Assessment of 3C-SiC/Si Heteroepitaxy;Materials;2023-05-18

2. Heteroepitaxial InP growth on a Si(001) substrate using a Ge buffer layer in MOCVD;2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM);2023-03-07

3. Status of 3 C ‐ SiC Growth and Device Technology;Wide Bandgap Semiconductors for Power Electronics;2021-10-29

4. Mid-infrared type-II InAs/InAsSb quantum wells integrated on silicon;Applied Physics Letters;2020-09-28

5. Optical and interfacial properties of epitaxially fused GaInP/Si heterojunction;Journal of Applied Physics;2020-08-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3