Computer Modeling of Nanoporous Materials: An ab initio Novel Approach for Silicon and Carbon

Author:

Valladares Ariel A.,Valladares Alexander,Valladares R. M.

Abstract

AbstractCarbon and silicon have been consistently proposed as elements useful in the generation of porous materials. Carbon has been insistently postulated as a promising material to store hydrogen, and crystalline silicogermanate zeolites have recently been synthesized and are being considered in catalytic processes. In the present work we report an approach to generating porous materials, in particular porous carbon and silicon, which leads to the existence of nanopores within the bulk. The method consists in constructing a crystalline diamond-like supercell with 216 atoms with a density (volume) close to the real value, then halving the density by doubling the volume (50% porosity), and subjecting the resulting supercell to an ab initio molecular dynamics process at 300 K for Si, and 1000 K for carbon, followed by geometry relaxation. The resulting samples are essentially amorphous and display pores along some of the “crystallographic” directions. We report their radial distribution functions and the pore structure where prominent.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3