Technical Basis for Codisposal of Gasification and Combustion Ash from the Plants at Beulah, North Dakota

Author:

McCarthy G. J.,Hassett D. J.,Manz O. E.,Groenewold G. H.,Stevenson R. J.,Henke K. R.,Kumarathasan P.

Abstract

ABSTRACTThe technical hasis for codisposal of gasification ash from the Great Plains Gasification Associates plant, combined with cementitious “scrubber ash” and bottom ash from the adjoining Antelope Valley generating station, both located in Beulah, North Dakota, has been explored. Nine blends containing only the ashes and tap water were fabricated into cylinders and tested for compressive strength and other physical properties. A blend having the ash proportions of the two plants was tested for leachability with respect to several regulated and minor elements. Mineralogical characterization by XRD was performed on the individual waste solids and the cured mixes. Most of the blends had compressive strengths greater than 400 psi after 7-day/38 C and 28-day/21 C curing. The 7-day treatment led to better consolidated test cylinders. Leaching behavior, evaluated by the EPA-EP and ASTM tests, was determined for As, Se, B, V, Mo, Ba, Sr, and K. Average fixation factors (the ratio of leaching expected from a weighted average of its components to the actual leaching of the specimen) of 2 to 4 were observed for the 7-day cured specimens and 1 to 2 for the 28-day specimens. Not all elements had reduced leaching in the fabricated specimens; Se and V leaching increased in the fabricated specimens. In addition to ash proportions, curing conditions (T, pH2O, time) and water to solid ratio appear to key parameters in obtaining well-consolidated and lower leachability products. XRD indicated that ettringite and minor calcite were the only crystalline reaction products of the cementitious reactions in the cured codisposal mix.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference13 articles.

1. 8. American Society for Testing and Materials, 1983 Annual Book of ASTM Standards - Water and Environmental Technology, Part 31, p. 1258 (1979).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3