Chemistry and structural modulations in Bi2Sr2CuO6

Author:

Shen Y.,Richards D.R.,Hinks D.G.,Mitchell A.W.

Abstract

A series of samples along the composition lines Bi2+xSr2−xCuOy, and Bi2Sr2−xCuOy have been used to study the structural modulation, chemistry, and superconducting properties of pseudo-tetragonal Bi2Sr2CuO6 (2201). The 2201 phase can be formed from crystallization of thin glassy platelets. The sample displayed a strong crystallographic (00l) orientation which made it possible to determine incommensurate modulations near (00l) reflections using a conventional x-ray θ-2θ scan. From the crystallization of the 2201 phase, it was found that structural modulation was intrinsic to the phase, and ordering of the structure required a long time at high temperature. High temperature in situ x-ray diffraction of a 2201 Bi2Sr1.85CuOy platelet showed that the modulation existed at 875 °C in O2 (Tmelt ≍ 892 °C in O2). These suggest that the structural modulation cannot be caused solely by oxygen ordering and that metal-ion displacement must be involved. By removing 0.04 to 0.05 oxygen atom per formula unit from Bi2Sr2CuOy and Bi2Sr1.85CuOy, the c* components of the modulation changed from 0.31 to 0.26 and from 0.38 to 0.31, respectively, while the b* component of the modulation remained approximately 0.2. This demonstrates that oxygen, while not the sole cause, does play a role in the formation of the structural modulation. However, the invariance of bmod with respect to the change in oxygen content does not support the model that explained the modulation by inserting extra oxygen in the BiO plane. By varying metal-ion concentrations of Bi and Sr we found that both the lattice parameters and the modulation vectors depended more on the Bi/Sr ratio than on the Sr concentration alone. As the Bi/Sr ratio increased from 1.0 to 1.35, the modulation lines moved toward the (00l) reflections. The corresponding superstructural periodicities were calculated to vary from ∼1/5b* + 0.32 c* to ∼1/5 b* + 0.63 c*. Effects of oxygen content and metal-ion concentration on the 2201 phase formation and the superconducting properties will also be discussed.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3