Author:
Watanabe Yoshihisa,Nakamura Yoshikazu
Abstract
The change in the surface morphology of metallic glasses Fe78B13Si9 during the early stage of the crystallization process has been studied mainly by atomic force microscopy (AFM). Specimens of 50-μm thickness have been heated up to 323 K, 373 K, 423 K, and 523 K with a heating rate of 30 K/min in vacuum, and then the surface morphology of each specimen has been observed by AFM in air. In the surface image of the specimen heated to 323 K, many holes are observed and inside the holes single or plural protrusions can be observed. Clusters composed of aggregated protrusions are also found like islands in the amorphous sea. The specimen heated to 323 K has also been observed by a high-resolution transmission electron microscope and crystalline structures among the amorphous matrix have been detected. From the selected area diffraction study, the crystalline structure is found to be α–Fe crystallites. In contrast, in the AFM image of the surface of the specimen heated to 423 K, no holes are seen and many protrusions are found to extend above the surface and form several parallel lines. The spatial density of protrusions above the surface becomes much higher in the specimen heated to 523 K. We propose that this change in the surface morphology during heat treatments indicates the process of nucleation and growth of α–Fe crystallites in the surface of metallic glasses. It is also found that the stage of many protrusions extending above the surface corresponds with the beginning of exoelectron emission from the surface. This result suggests that exoelectron emission and surface crystallization connect with each other.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献