Milling and mechanical alloying of inorganic nonmetallics

Author:

Kosmac T.,Courtney T.H.

Abstract

The versatility of mechanochemical processing was investigated in a number of nonmetallic inorganic systems. It is shown that high energy grinding can be used to produce amorphous carbon from synthetic graphite and some forms of natural graphite. Elemental sulfur can likewise be amorphized by prolonged high energy grinding. Phase transformations of αFe2O3 (hematite) and mechanochemical reactions of this phase with ZnO and NiO are strongly influenced by the presence of iron resulting from wear of the grinding media. Thus spinel type ferrites were obtained by grinding of such mixtures for short times (1–3 h in a Spex mill); however, longer grinding times resulted in the formation of FeO or (Fe,Zn)O (when grinding ZnO) or FeO or (Fe, Ni)O (when grinding NiO), presumably as a result of the reaction of mill wear debris with the mill charge. The suspected (Fe, Zn)O phase is most likely a nonequilibrium solid solution. Negligible were accompanied the mechanochemical synthesis of NiS and ZnS from elemental powders. These sulfides were formed for short milling times. In contrast, sulfides of tungsten were not formed even when rather long milling times were employed. The survey of mechanochemical reactions presented here further reinforces the concept that this low temperature synthesis method is a robust process route for production of a wide range of materials.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3