Atomistic Aspects of Brittle Fracture

Author:

Gumbsch Peter,Cannon Rowland M.

Abstract

The mechanical properties of materials are ultimately determined by events occurring on the atomic scale. In the case of brittle fracture, this connection is obvious, since the crack in a perfectly brittle material must be atomically sharp at its tip. The crack moves by breaking individual bonds between atoms and can therefore be regarded as a macroscopic probe for the atomic bonding. Nevertheless, traditional analysis of brittle-fracture processes resorts to the treatment of Griffith,1 which implies thermodynamic equilibrium. The Griffith criterion for the mechanical stability of a crack can be formulated as a balance of the crack driving force, the energyrelease rate G, and the surface energy ɣs of the two freshly exposed fracture surfaces: G = 2ɣs. The crack driving force can be obtained from elasticity theory. Within linear elasticity, the crack is characterized by a singularity in the stress field that decays as the inverse square root of the distance R from the crack. The strength of the singularity is characterized by the stressintensity factor K, the square of which directly gives access to the energy-release rate (G = K2/E′, where E′ is an appropriate elastic modulus). While this linear elastic description of the material is not disputed for brittle materials, except for a few atomic bonds around the crack, the assumption that the resistance of the material to crack propagation will only be characterized by the surface energy of the fracture surfaces is certainly worth some further consideration. Such considerations should range from examining atomic details at the tip of a single brittle crack to the relevance of more complex fracture events involving additional irreversible processes and complex crack geometries.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural network potential for Zr-H;Journal of Nuclear Materials;2024-12

2. A search for the upper bound of the cleavage energy of silicon crystal;Engineering Fracture Mechanics;2024-03

3. Atomistic Investigation of Grain Boundary Fracture in Alumina;Nano Letters;2024-02-28

4. From macro fracture energy to micro bond breaking mechanisms – Shorter is tougher;Engineering Fracture Mechanics;2023-09

5. A dissipation informed peridynamic model for dynamic brittle fracture;Communications in Nonlinear Science and Numerical Simulation;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3