High Quality Al-Ga-In-N Heterostructures Fabricated by MOVPE Growth in Multiwafer Reactors

Author:

Schmitz D.,Beccard R.,Schoen O.,Niebuhr R.,Wachtendorf B.,Juergensen Holger

Abstract

We present results on the growth of Al-Ga-In-N films in multiwafer reactors with 7×2″ wafer capacity. The design of these reactors allows the combination of high efficiency (TMGa efficiency for GaN around 30%) and excellent uniformity. Results on the growth of all materials from the Al-Ga-In-Nitride family are presented in detail. GaN is grown with an excellent optical quality and very good thickness uniformity below 2% across 2″ wafers. The material quality is shown by electron mobility of more than 500 cm2/Vs at an intentional Si-doping of approximately 1×1017 cm−3. Controlled acceptor doping with Mg yields carrier concentrations between 5×1016 and 1018 cm−3. The layer thickness uniformity of the films are better than 2% over a 2″ wafer area. GaInN is grown with PL emission wavelengths in the visible blue region showing a uniformity better than 1.5 nm standard deviation. The film thickness uniformity represents the same figures as obtained for the binary. The compositional uniformity of AlGaN is in the sub 1% range corresponding to a wavelength variation below 1 nm.The fabrication of heterostructures from these binary and ternary materials is described as well as results from the characterization of these structures. The results show that reliable and efficient production of Al-Ga-In-Nitride based optoelectronic devices can be performed in multiwafer reactors.

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3