Author:
Wolfenstine J.,Kim H.K.,Earthman J.C.
Abstract
The high temperature (T = 1083–1388 K, 0.65–0.84 Tm) creep behavior of single crystalline Ni3Al(Ta, B) was investigated. A change in the creep characteristics as a function of applied stress was observed at the uppermost testing temperatures of 1288 and 1388 K. At low applied stress levels the Norton law stress exponent is equal to 4.3; for higher stresses the stress exponent is equal to 3.2. Different creep curves were observed, depending on the value of the stress exponent. The change in stress exponent and nature of the creep curve correspond to a change in the controlling deformation mechanism from dislocation climb to viscous dislocation glide for Ni3Al(Ta, B). The experimentally observed transition stress values between climb and viscous glide are in good agreement with values predicted from theory, assuming that the major force retarding viscous dislocation glide in Ni3Al(Ta, B) is the antiphase boundary interaction.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献