Abstract
The kinetics of reaction between chemical vapor deposited diamond films (prepared by the hot filament method) and oxygen gas was studied by thermogravimetry. The reactions were carried out at atmospheric pressure in gas mixtures containing between 25 and 100 vol. % oxygen (balance argon), and in the temperature range of 973–1073 K. The apparent order of the reaction is close to 0.6, and the apparent activation energy is 232 kJ/mole. The kinetic data are explained by assuming no mass transfer limitations, direct reaction between CVD diamond and oxygen to form CO and CO2, and thermodynamic equilibrium between CVD diamond, CO, and CO2. The dominant chemical reaction involves the formation of CO, while the formation of CO2 is not significant. Three stage mechanistic schemes are developed involving adsorption of oxygen on CVD diamond surface, surface chemical reaction, and desorption of adsorbed species to CO or CO2. The experimental rate data conform to the reaction rate expressions developed for the mechanistic schemes leading to the formation of CO and CO2, assuming adsorption as the rate-controlling step. The adsorption rate constants for the formation of CO and CO2 are determined. The activation energy of the adsorption step leading to the formation of CO is 213 kJ/mole.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Reference18 articles.
1. Thermal oxidation characteristics of chemical vapour deposited diamond films
2. 14 Pryor R. W. , Wei L. , Kuo P. K. , Thomas R. L. , Anthony T. R. , and Banholzer W. F. , in reference 8, p. 863.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献