Author:
Brunel M.,Enzo S.,Jergel M.,Luby S.,Majkova E.,Vavra I.
Abstract
Tungsten/silicon multilayers with tungsten layers of a thickness of 1–2 nm were prepared by means of electron beam deposition. Their structure and thermal stability under rapid thermal annealing were investigated by a combination of x-ray diffraction techniques and cross-sectional transmission electron microscopy. The crystallization behavior was found to depend on the interdiffusion and mixing at the tungsten/silicon interfaces during deposition as well as during annealing. The as-deposited tungsten/silicon multilayers were amorphous and remained stable after annealing at 250 °C/40 s. Interdiffusion and crystallization occurred after annealing all samples from 500 °C/40 s up to 1000 °C/20 s. By performing the same heat treatment in the tungsten/silicon multilayers, the formation of body-centered cubic W was observed with a layer thickness ratio δW/δsi = 1, whereas tetragonal WSi2 was detected in tungsten/silicon multilayers with a layer thickness ratio of δw/δsi ∼0.25. This dependence of the crystallization products on the layer thickness ratio δw/δsi originates from the different phenomena of interdiffusion and mixing at the tungsten/silicon interfaces. The possible formation of bcc tungsten as a first stage of crystallization of tungsten-silicon amorphous phase, rich in tungsten, is discussed.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献