Processing characteristics and properties of BiSrCaCuO superconducting glass ceramics prepared by melt-quenching

Author:

Massalker Y.,Sembira A.N.,Baram J.

Abstract

In the framework of an extensive research program for the production of textured and ductile high Tc BiSrCaCuO (BiSCO) wires and tapes, the influence of processing (by melt-quenching) parameters on the crystallization behavior, the quantitative and qualitative evolution of the crystallized phases, the chemical changes in the bulk, and the superconductive properties of various initial compositions of bulk BiSCO glass ceramics, prepared by melt-quenching, have been studied. The elemental composition of the samples changes drastically during heat treatments, affecting mainly Pb, but Sr and Ca also. The identified crystallographic phases, by XRD, were the low Tc superconducting “2201” (Bi2Sr2CuO6) phase, the high Tc superconducting “2212” and “2223” phases, and the Ca2PbO4, Ca2CuO3, CuO, CaO, Bi2Sr3-xCaxOy, and (Ca, Sr)3Cu5O8 “impurities” compounds. A crystallization sequence from the amorphous state is proposed, involving a reaction at 800 °C between “2223”, CaO, Ca2CuO3, and Bi2SrCaxOy to form “2212” + Ca2PbO4 + CuO and a 2(“2212”) → “2223” + “2201” disproportionation reaction that takes place with the intake of oxygen at a higher temperature. Decomposition of Ca2PbO4, which occurs also at high temperature, causes an increase of “2212”, which favors the increase of “2223” through the disproportionation reaction. The glass transition starts around Tg = 400 °C, and the crystallization reactions from the amorphous state proceed in two steps, at Txl = 465 °C and Tx2 = 504 °C. The Bi2Sr3-xCaxOy “2212” and “2223” phases are among the first to crystallize as early as after a 1 h treatment (in air) at 488 °C. A gain in weight is observed by thermogravimetry, caused by intake of the oxygen necessary for the formation of the high Tc superconducting phases. The oxygen intake starts as early as 600 °C. The Tc onset for the “2223” phase is at 122 K, and at 85.5 °C for the “2212” phase. Coefficients of thermal expansion have been measured and shown to differ according to crystallographic direction of expansion. The resistivity is increased on cooling, indicating semiconducting behavior of the 2223 BiSCO ceramic (semiconductor-to-metal transition temperature: 210–220 K).

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference42 articles.

1. 32The proposed reactions show a stoichiometric balance. This is, however, not a proof that these reactions do indeed occur. More convincing is the fact that the quantitative changes observed by the x-ray diffraction are in good coordinateness with the “balanced” reaction schemes.

2. Preparation of high-T c (110K) Bi-Sr-Ca-Cu-O superconductors from amorphous films by rapid quenching after rapid melting

3. 40If evaporation of Pb occurs at 650 °C, it did so in both samples, but could have been somehow accelerated in the powders, due to higher surface to volume ratio.

4. Growth of the 2223 Phase in Leaded Bi-Sr-Ca-Cu-O System

5. 42The critical current characteristics of the melt-quenched specimens are currently evaluated, with relation to several melttexturing methods, and will be reported elsewhere.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3