Author:
Vollath Dieter,Sickafus Kurt E.
Abstract
Synthesizing oxide ceramic powders by application of a microwave plasma is a great advantage. There are two ways the microwave plasma can be used: The first is as a source of heat for the pyrolysis of solutions and the second is to excite gas reactions to obtain nanosized powders. Both applications are superior to standard methods. A microwave cavity well suited for these experiments and its operating characteristics are described. Using a microwave plasma as a source of heat for pyrolytic decomposition of nitrates in aqueous solutions leads to a fine-grained product with particle sizes from 100 to 1000 nm. Crystallite sizes in those particles are in most cases less than 10 nm. This is demonstrated with zirconia-based ceramics, such as ZrO2−3 mol % Y2O3−20 mol % Al2O3. Depending on the conditions during pyrolysis, it is possible to obtain a product in which alumina is either dissolved in zirconia or the onset of the phase separation is observed. The energy efficiency of this process is better than 80%. If the reactants are gaseous, e.g., ZrCl4, it is possible to produce powders with mean particle sizes of about 4 nm. In the case of zirconia, these particles are monocrystalline with a cubic structure. This structure is not in equilibrium under the experimental conditions.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献