Synthesis of ceramic oxide powders in a microwave plasma device

Author:

Vollath Dieter,Sickafus Kurt E.

Abstract

Synthesizing oxide ceramic powders by application of a microwave plasma is a great advantage. There are two ways the microwave plasma can be used: The first is as a source of heat for the pyrolysis of solutions and the second is to excite gas reactions to obtain nanosized powders. Both applications are superior to standard methods. A microwave cavity well suited for these experiments and its operating characteristics are described. Using a microwave plasma as a source of heat for pyrolytic decomposition of nitrates in aqueous solutions leads to a fine-grained product with particle sizes from 100 to 1000 nm. Crystallite sizes in those particles are in most cases less than 10 nm. This is demonstrated with zirconia-based ceramics, such as ZrO2−3 mol % Y2O3−20 mol % Al2O3. Depending on the conditions during pyrolysis, it is possible to obtain a product in which alumina is either dissolved in zirconia or the onset of the phase separation is observed. The energy efficiency of this process is better than 80%. If the reactants are gaseous, e.g., ZrCl4, it is possible to produce powders with mean particle sizes of about 4 nm. In the case of zirconia, these particles are monocrystalline with a cubic structure. This structure is not in equilibrium under the experimental conditions.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3