Hydrothermal synthesis and sintering of ultrafine CeO2 powders

Author:

Zhou Y.C.,Rahaman M.N.

Abstract

Undoped CeO2 and Y2O3-doped CeO2 powders, with particle sizes of ≍10–15 nm, were prepared under hydrothermal conditions of 10 MPa at 300 °C for 4 h. The compacted powders were sintered freely in air or in O2 at constant heating rates of 1–10 °C/min up to 1350 °C. The undoped CeO2 started to sinter at ≍800–900 °C and reached a maximum density of 0.95 of the theoretical at 1200 °C, after which the density decreased slightly. Isothermal sintering at 1150 °C produced a sample with a relative density of ≍0.98 and an average grain size of ≍100 nm. The samples sintered above 1200 °C exhibited microcracking. The decrease in density and the microcracking above 1200 °C are attributed to a redox reaction leading to the formation of oxygen vacancies and the evolution of O2 gas. Doping with Y2O3 produced an increase in the temperature at which measurable sintering commenced and an increase in the sintering rate, compared with the undoped CeO2. Sintered samples of the doped CeO2 showed no microcracks. The CeO2 doped with up to 3 mol% Y2O3 was sintered to almost full density and with a grain size of ≍200 nm at 1400 °C.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3