Role of Ag additions in the microstructural development, strain tolerance, and critical current density of Ag-sheathed BSCCO superconducting tapes

Author:

Singh J.P.,Joo J.,Vasanthamohan N.,Poeppel R.B.

Abstract

Ag-sheathed tapes of Bi–Sr–Ca–Cu–O (BSCCO) and BSCCO–Ag superconducting cores were made by a powder-in-tube technique and subjected to repeated cycles of pressing and heat treatments. These thermomechanical treatments resulted in enhanced texturing and grain growth that improved the critical current density (Jc). Additions of Ag to the BSCCO core further increased texturing and brought an additional improvement in Jc. Strain tolerance of the tapes was evaluated by measuring Jc before and after application of a predetermined level of tensile strain in a uniaxial mode. The fraction of Jc retained after the strain application was higher in the BSCCO–Ag composite tapes than in the monolithic BSCCO. For a 1.2% applied strain, 90% of the initial Jc was retained in the BSCCO–Ag composite tape, compared to only 40% in the monolithic BSCCO tapes. The higher strain tolerance of the BSCCO–Ag tapes may be related to improved mechanical properties (strength, flexibility, and fracture toughness) and grain connectivity due to Ag addition.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3