Author:
Northrup Clyde J. M.,Arnold George W.,Headley Thomas J.
Abstract
ABSTRACTThe first observations of physical and chemical changes induced by lead implantation damage and leaching are reported for two proposed U.S. nuclear waste forms (PNL 76–68 borosilicate glass and Sandia titanate ceramics) for commercial wastes. To simulate the effects of recoil nucleii due to alpha decay, the materials were implanted with lead ions at equivalent doses up to approximately 1 × 1019 a decays/cm3 . In the titanate waste form, the zirconolite, perovskite, hollandite, and rutile phases all exhibited a mottled appearance in the transmission electron microscope (TEM) typical of defect clusters in radiation damaged, crystalline solids. One titanate phase containing uranium was found by TEM to be amorphous after implantation at the highest dose. No enhanced leaching (deionized water, room temperature, 24 hours) of the irradiated titanate waste form, including the amorphous phase, was detected by TEM, but Rutherford backscattering (RBS) suggested a loss of cesium and calcium after 21 hours of leaching. The RBS spectra also indicated enhanced leaching from the PNL 76–68 borosilicate glass after implantation with lead ions, in general agreement with the observations of Dran, et al. [6,7] on other irradiated materials. Elastic recoil detection spectroscopy (ERD), used to profile hydrogen after leaching, showed penetration of the hydrogen to several thousand angstroms for both the implanted and unimplanted materials. These basic studies identified techniques to follow the changes that occur on implantation and leaching of complex amorphous and crystalline waste forms. These studies were not designed to produce comparisons between waste forms of gross leach rates.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献