Photoluminescence of Eu3+ in Si/SiO2 Nanostructure Films

Author:

Liu Huimin,Mahfoud Aziz,Nery G. A.,Resto O.,Fonseca Luis F.,Weisz Zvi S.

Abstract

ABSTRACTEu3+ -doped Si/SiO2 nanocomposites were successfully prepared by Ar sputtering deposition on quartz substrates. The optical properties were studied using time-resolved photoluminescence spectroscopy. Excited by intense picosecond laser pulses with energy greater than1GW/cm2 and wavelength at 532nm the observed photoluminescence consists of a rapidly decaying component with life time of ∼1 s and a slowly component with life time of ∼ 2 ms. The former was recognized as coming from Si/SiO2 nanostructures matrix while the latter as coming from the impurity Eu3+ ions. Using the intense laser excitation a two-photon absorption by silicon matrix occurred, resulting in photo-induced carriers produced in conduction band. A direct recombination from Si/SiO2 nanostructure host gives a weak but fast emission, and creates a large number of nonequilibrium phonon. For Eu3+ emission a set of 5D0 to 7F multiplet transitions were identified. In addition to the direct excitation by 532nm the excited state 5D0 of Eu3+ ions was also found to be populated due to energy transfer from silicon matrix. The mechanism of phonon-assisted energy transfer is discussed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3