Mechanical Deformation of Crystalline Silicon During Nanoindentation

Author:

Bradby J.E.,Williams J.S.,Wong-Leung J.,Swain M.V.,Munroe P.

Abstract

ABSTRACTDeformation during spherical and pointed indentation in (100) crystalline silicon usig a UMIS-2000 nanoindenter has been studied using cross-sectional transmission electron microscopy (XTEM), atomic force microscopy (XTEM), atomic force microscopy and Raman microspectroscopy. XTEM samples were prepard by focused ion beam milling to accurately position the cross-section through the indentations. Indentation loads were chosen below an above the yield point for silicon to investigate the modes of plastic deformation. Slip planes are visible in XTEm micrographs for all indentation loads studied but slip is not the main avenue for plastic deformation. A thin layer of poly-crystalline material has been identified (indexed as Si-XII from diffraction patterns) on the low load indentation, just prior to yield (pop-in during loading). For loading above the yield point, a large region of amorphous silicon was observed directly under the indenter when fast unloading conditions were used. The various microstructures and phase observed below indentations are correlated with load/unload data.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3