Author:
Chen Xiaohong,Dettlaff-Weglikowska Urszula,Haluska Miroslav,Hulman Martin,Roth Siegmar,Hirscher Michael,Becher Marion
Abstract
AbstractThe hydrogen adsorption capacity of various carbon nanostructures including single-wall carbon nanotubes, graphitic nanofibers, activated carbon, and graphite has been measured as a function of pressure and temperature. Our results show that at room temperature and a pressure of 80 bar the hydrogen storage capacity is less than 1 wt.% for all samples. Upon cooling, the capacity of hydrogen adsorption increases with decreasing temperature and the highest value was observed to be 2.9 wt. % at 50 bar and 77 K. The correlation between hydrogen storage capacity and specific surface area is discussed.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献