Growth and oxidation of boron-doped diamond films

Author:

Farabaugh E.N.,Robins L.,Feldman A.,Johnson Curtis E.

Abstract

Boron-doped diamond films have been grown by the hot filament chemical vapor deposition process. The feed gas was a mixture of argon, bubbled through a solution of B2O3 in ethanol, and hydrogen. The highest growth rate was 0.7 μm/h. The boron concentration in the films depended on the concentration of B2O3 in the ethanol. The highest boron doping level, as measured by secondary ion mass spectroscopy, was 6300 atomic ppm. Raman spectroscopy and x-ray diffraction both confirmed the presence of crystalline diamond in the films. The frequency of the diamond Raman line decreased with increasing boron concentration. This shift may arise from an interaction of the charged carriers (holes) produced by the boron doping and the Raman-active optic phonon. The oxidation rates of doped and undoped films were measured by thermogravimetric analysis at 700 °C in flowing high purity oxygen. Films with a boron concentration of 6300 ppm oxidized at one-tenth the rate of undoped diamond. A layer of B2O3, detected on the surface of an oxidized B-doped film, is believed to act as a protective barrier that decreases the oxidation rate.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3