The effect of stoichiometry on the microstructure and properties of lead lanthanum titanate thin films

Author:

Khan Ashraf R.,Desu Seshu B.

Abstract

Thin films of Lead Lanthanum Titanate (PLT) corresponding to 28 at. % of La were prepared by the metal-organic decomposition (MOD) process. The films were fabricated from two solutions of different composition. The composition of the first solution was determined, assuming that the incorporation of La3+ in the PbTiO3 structure gives rise to A-site or Pb vacancies, whereas for the composition of the other solution the creation of B-site or Ti vacancies was assumed. The effect of excess lead on the microstructure and the optical and electrical properties was studied for 0% to 20% excess PbO. The x-ray diffraction patterns of all films at room temperature indicated a cubic structure with a lattice constant of 3.92 Å. Optical and electrical measurements showed the films made assuming B-site vacancies had better properties. In general, excess PbO was found to improve the optical transmittance as well as the electrical properties of films. However, in films assuming the formation of B-site vacancies, PLT showed improved electrical properties only up to 5–10% excess PbO, while higher PbO additions had a deleterious effect. The films had a high resistivity, good relative permittivity, low loss, very low leakage current density, and high charge storage density. A type-B film with 10% excess Pb had a relative permittivity of 1340 at 100 kHz and a charge storage density of around 16.1 μC/cm2 at a field of 200 kV/cm at room temperature.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3