Kinetics of hydrogen desorption from palladium and ruthenium-palladium foils

Author:

Cabrera A.L.,Morales Erie,Armor J.N.

Abstract

The absorption of hydrogen and carbon monoxide at room temperature by palladium and 5% ruthenium-palladium foils was studied using thermal desorption spectroscopy. It was found that hydrogen readily diffused in the palladium and desorbed as one broad peak at about 650 K. Plots of the In (rate) versus inverse absolute temperature indicate that the desorption order is n = 1.25 and the activation energy is about 8.5 Kcal/mol. Carbon monoxide is adsorbed, as two different states, on the surface of the foil and complete coverage is quickly reached below 100 L. Hydrogen also diffuses in 5% ruthenium-palladium foil but to a lesser degree. Two hydrogen desorption peaks are observed in the Ru-Pd alloy. The desorption traces can be fitted with two peaks and the desorption orders are n = 2 for the first peak and n = 1.25 for the second peak. Activation energies of 10.7 and 5.6 Kcal/mol are obtained for the first and second hydrogen peaks, respectively. The first hydrogen desorption peak is regarded as hydrogen desorbing from the surface sites while the second peak is regarded as hydrogen diffusing from below the surface. Activation energies for bulk diffusion were obtained from hydrogen uptake measurements using a sensitive microbalance. These energies corresponded to 4.4 Kcal/mol for Pd foil and 4.9 Kcal/mol for the Ru-Pd alloy. Discussion about the relation between these results with prior studies of hydrogen adsorption on Pd single crystal is included. The appearance of a fractional order for hydrogen desorption is also discussed.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3