Author:
Shen T.D.,Koch C.C.,Tsui T.Y.,Pharr G.M.
Abstract
Young's moduli of nanocrystalline Fe, Cu, Ni, and Cu-Ni alloys prepared by mechanical milling/alloying have been measured by the nanoindentation technique. The results indicate that Young's moduli of nanocrystalline Cu, Ni, and Cu–Ni alloys with a grain size ranging from 17 to 26 nm are similar to those of the corresponding polycrystals. The dependence of Young's modulus of nanocrystalline Fe on grain size corresponds well to a theoretical prediction, which suggests that the change in the Young and shear moduli of nanocrystalline materials, free of porosity, with a grain size larger than about 4 nm, should be very limited (<10%). It is likely that reported large decreases in the Young and shear moduli of nanocrystalline materials prepared by gas-condensation/vacuum consolidation result from a relatively large volume fraction of pores.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
226 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献