Interaction and Energy Level Alignment at Interfaces between Pentacene and Low Work Function Metals

Author:

Koch N.,Ghijsen J.,Ruiz R.,Pflaum J.,Johnson R. L.,Pireaux J.-J.,Schwartz J.,Kahn A.

Abstract

ABSTRACTA number of low workfunction metals (samarium, alkali metals) were deposited onto vacuum sublimed thin films of pentacene. The change in the valence electronic structure of the organic material was studied by in situ ultraviolet photoemission spectroscopy (UPS). Alkali metal intercalation leads to the appearance of a new photoemission feature within the pentacene energy gap, due to a charge transfer from the alkali atoms to the lowest unoccupied molecular orbital (LUMO) of the organic material. The energy spacing between this emission feature and the relaxed highest occupied molecular orbital (HOMO) of the pristine molecule is 1 eV. From X-ray photoemission spectroscopy core level analysis, we estimate a concentration ratio of two alkali metal atoms per pentacene molecule at maximum intercalation level, leading to a complete filling of the LUMO. This is consistent with the results from UPS that the new emission is always observed below the Fermi-level. Samarium is found to exhibit a more subtle interaction with pentacene: the molecular orbitals remain almost unperturbed upon Sm deposition. The resulting energy level alignment at this interface seems to be very favorable for the injection of electrons from Sm into pentacene, as the HOMO-onset is found at 1.8 eV below the metal Fermi edge. This value is close to the 2.2 eV HOMO-LUMO gap of pentacene measured by UPS and inverse photoemission spectroscopy, thus corresponding to a small electron injection barrier.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effective Work Functions of the Elements;Progress in Surface Science;2021-12

2. N-doping of pentacene by decamethylcobaltocene;Applied Physics A;2009-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3