Obsevations Ofstress-Induced Structuraldisorder and Fictive Stress in Bulk Metallic Glasses

Author:

Chen Ho-Sou,Kato Hidemi,Inoue Akihisa

Abstract

ABSTRACTThe transformation from Newtonian to non-Newtonian viscous flow at the glass transition of Pd- and Zr-based alloy glasses has been investigated in compressive tests under either a constant strain rate, or a constant load. The transition occurs at a critical stress being nearly independent of temperature. The mechanism of the transition thus has been attributed to the stress-induced structural relaxation. This paper describes the evidence of stress-induced disorder as indicated by the change in the viscosity with stress and the evolution of specific heat of the alloy glasses subjected to non-Newtonian steady-state viscous flow. Also presented in this paper is the in-situ observation of structural disorder, by direct measurements of the temperature change of sample, in particular the soften process during a constant load deformation. The heat of evolution is then calculated, and found to scale as the logarithm of the normalized viscosity during entire deformation. This result implies that the relationship between the structural disorder, as indicated by the enthalpy change and viscosity is the same in the transient state during deformation as well as in the steady-state flow process. This is conceptionally very important in that it enables us to introduce a fictive stress which indirectly represents the glass structure.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3