Author:
Fang J. S.,Chang C. T.,Chin T. S.
Abstract
Barium-strontium titanate (BST) thin films were prepared by a two-step deposition using radio-frequency magnetron sputtering on Pt/Ti/SiO2-buffered Si(100) substrate. The initial BST layer thickness and intermediate annealing strongly affect the resultant electric properties of the two-step BST thin films. The optimal two-step BST films, with a first-layer thickness of 30 nm intermediate annealed at 610 °C under 1 torr oxygen. The dielectric breakdown and leakage current density of the two-step film are above 625 kV/cm and 9.5 nA/cm2 at 100 kV/cm, respectively, compared with 400 kV/cm and 17 nA/cm2 for the one-step films. We conclude that the two-step deposition dramatically improves dielectric breakdown and enhances leakage current density while keeping the dielectric constant uninfluenced.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献