Mechanical properties of nanocrystalline and epitaxial TiN films on (100) silicon

Author:

Wang H.,Sharma A.,Kvit A.,Wei Q.,Zhang X.,Koch C. C.,Narayan J.

Abstract

We investigated mechanical properties of TiN as a function of microstructure varying from nanocrystalline to single crystal TiN films deposited on (100) silicon substrates. By varying the substrate temperature from 25 to 700 °C during pulsed laser deposition, the microstructure of TiN films changed from nanocrystalline (having a uniform grain size of 8 nm) to a single crystal epitaxial film on the silicon (100) substrate. The microstructure and epitaxial nature of these films were investigated using x-ray diffraction and high-resolution transmission electron microscopy. Hardness measurements were made using nanoindentation techniques. The nanocrystalline TiN contained numerous triple junctions without any presence of amorphous regions. The width of the grain boundary remained constant at less than 1 nm as a function of boundary angle. Similarly the grain boundary structure did not change with grain size. The hardness of TiN films decreased with decreasing grain size. This behavior was modeled recently involving grain boundary sliding, which is particularly relevant in the case of hard materials such as TiN.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3