Lubricity of zinc oxide thin films: Study of deposition parameters and Si as an additive

Author:

Nainaparampil J. J.,Zabinski J. S.

Abstract

Zinc oxide preferentially crystallizes into a wurzite structure and has a unique set of properties. There have been numerous studies on doped zinc oxide thin films as an optical coating or as a semiconductor material. However, very little work has been reported on its tribological properties. Recent reports from this laboratory revealed that ZnO has good potential for controlling friction and wear. ZnO has an open structure and favorable coordination number, which permits zinc to freely move to different positions in the crystal lattice and to accommodate external atoms as substitutes. The nature of the substitution and the concentration of Zn interstitials may be used to control tribological performance. In this work, thin films of zinc oxide were deposited by pulsed laser ablation while silicon was added simultaneously by magnetron sputtering. The effects of deposition geometry and oxygen partial pressure on stoichiometry and microstructure were evaluated. It was found that the angle of deposition and oxygen partial pressure control coating texture. Depositions normal to the sample surface, along with 10 mtorr of oxygen, produced strong (002) texture. These conditions were selected for Si-doping studies. The tribological characteristics of Si-doped coatings were evaluated at both room and high temperature. Addition of Si around 7–8% gave a coefficient of friction of about 0.2 at 300 °C, decreasing to 0.13 around 500 °C.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3