Author:
He Jianhong,Ajdelsztajn Leoanardo,Lavernia Enrique J.
Abstract
Nanostructured WC–18% Co powder was synthesized by using cryogenic mechanical milling, and the thermal stability of the nanostructured powder was investigated in detail. The results indicated that the as-synthesized WC–18% Co powder had an average WC particle size of 25 nm. Growth of WC particles occurred above 873 K; however, the average WC particle size remained smaller than 100 nm in the powder isothermally heated for 4 h at 1273 K. Thermal exposure in air at T < 623 K did not result in significant oxidation of the cryomilled powder. The thermal exposure did promote the formation of WO2and WO3oxides. The Co6W6C phase was detected by x-ray diffraction in the powder heated in nitrogen at 1273 K, and the phases associated with decarburization of WC, such as W2C, W3C phases, were not observed. With increasing temperature, the dissolution of W and C elements in the Co matrix led to a gradual increase in {111} crystallographic plane spacing, eventually leading to the formation of an amorphous phase.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献