Thermal stability of nanocrystalline WC–Co powder synthesized by using mechanical milling at low temperature

Author:

He Jianhong,Ajdelsztajn Leoanardo,Lavernia Enrique J.

Abstract

Nanostructured WC–18% Co powder was synthesized by using cryogenic mechanical milling, and the thermal stability of the nanostructured powder was investigated in detail. The results indicated that the as-synthesized WC–18% Co powder had an average WC particle size of 25 nm. Growth of WC particles occurred above 873 K; however, the average WC particle size remained smaller than 100 nm in the powder isothermally heated for 4 h at 1273 K. Thermal exposure in air at T < 623 K did not result in significant oxidation of the cryomilled powder. The thermal exposure did promote the formation of WO2and WO3oxides. The Co6W6C phase was detected by x-ray diffraction in the powder heated in nitrogen at 1273 K, and the phases associated with decarburization of WC, such as W2C, W3C phases, were not observed. With increasing temperature, the dissolution of W and C elements in the Co matrix led to a gradual increase in {111} crystallographic plane spacing, eventually leading to the formation of an amorphous phase.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3