Author:
Meza J.M.,Abbes F.,Troyon M.
Abstract
Dimensional analysis is used to show that the maximum penetration depth and the tip radius affect the β correction factor appearing in the Sneddon relationship between unloading contact stiffness, contact area, and elastic modulus. A simple analytical model based on elasticity theory is derived that predicts the variation of β with penetration depth. This model shows that β increases at low penetration depth and decreases with the tip radius. The β(h) curve given by the model is compared with that calculated by finite element analysis for an elastic material and also with that deduced from experimental measurements performed on fused quartz with two Berkovich indenters: a sharp one and a blunted one. It is also demonstrated that the correction factor can be expressed as two multiplicative contributions, a contribution related to the mechanical properties of the material and a contribution related to the indenter geometry. Implications of these findings on nanoindentation test are also discussed.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献