Nucleation and early growth of anodized TiO2 film

Author:

Jaroenworaluck A.,Regonini D.,Bowen C.R.,Stevens R.

Abstract

Anodized films of titanium were prepared under different controlled conditions in a water-based electrolyte containing fluorine ions, using either a constant potential or a potential gradually rising to 20 V. The films were then examined using transmission electron microscopy at different stages of growth, in particular, the very early stages of growth (30 s, 200 s, and 10 min) and when the ordered nano-tubular structure was finally established (2–4 h). The use of ramped voltage during the early stages of anodization allowed a well-interconnected porous network to develop and maintained active oxidation throughout anodization. The film, as formed, consisted mainly of amorphous oxide/hydroxides of titanium with small regions of nano-sized crystals. These were found more often in the denser regions of the amorphous network, particularly the arms of the coral-like structure that formed. As the anodized film grew in thickness, the pores tended to become aligned, leading to a surface layer of nanotubes on the electrode material. Electron optical characterization revealed that the nanotubes consist of a stack of rings where the passage of the current had been optimized.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3