Apatite-inducing ability of titanium oxide layer on titanium surface: The effect of surface energy

Author:

Wang X.J.,Li Y.C.,Lin J.G.,Hodgson P.D.,Wen C.E.

Abstract

In the present study, pure titanium (Ti) plates were firstly treated to form various types of oxide layers on the surface and then were immersed into simulated body fluid (SBF) to evaluate the apatite-forming ability. The surface morphology and roughness of the different oxide layers were measured by atomic force microscopy (AFM), and the surface energies were determined based on the Owens–Wendt (OW) methods. It was found that Ti samples after alkali heat (AH) treatment achieved the best apatite formation after soaking in SBF for three weeks, compared with those without treatment, thermal or H2O2 oxidation. Furthermore, contact angle measurement revealed that the oxide layer on the alkali heat treated Ti samples possessed the highest surface energy. The results indicate that the apatite-inducing ability of a titanium oxide layer links to its surface energy. Apatite nucleation is easier on a surface with a higher surface energy.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3