Improvement of oxidation-resistance of NiCrAlY coatings by application of CrN or CrON interlayer

Author:

Li W.Z.,Yao Y.,Wang Q.M.,Bao Z.B.,Gong J.,Sun C.,Jiang X.

Abstract

NiCrAlY coatings with and without CrN or CrON interlayer as diffusion barrier were deposited on superalloy DSM11 by arc ion plating (AIP). The oxidation performance of the coating systems was evaluated by isothermal oxidation tests at 1100 °C for 100 h. The element interdiffusion and oxidation behavior of the coating systems were described. It was found that the NiCrAlY coatings provided protective effect for the DSM11 substrate. However, serious interdiffusion between the coatings and substrate resulted in rapid degradation of the coatings. The addition of CrN or CrON interlayer between the coatings and substrate markedly decreased the interdiffusion. CrON interlayer performed better than CrN interlayer, which was attributed to the excellent diffusion barrier ability of Al2O3 layer formed in the interlayer at high temperature. Also, the NiCrAlY/CrON coating system exhibited more effective protection for DSM11 than the NiCrAlY/CrN coating system.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3