Author:
Wang Guoyong,Jiang Zhonghao,Zhang Hanzhuo,Lian Jianshe
Abstract
A fully dense nanocrystalline (nc) Cu with mean grain size of 72 nm and a broad grain size distribution was synthesized by electrodeposition. Uniaxial tensile tests were done at different strain rates and room temperature. A very high strength of 1.04 G was obtained at strain rate of 0.1 s−1. The nearly perfect plasticity with a large strain of close to 20% was displayed at specific low strain rates of 4 × 10−5 to 10−4 s−1. With increasing strain rate, the nearly perfect plasticity disappeared. Strain rate sensitivity and activation volume of the nc Cu were estimated from the flow stress at a fixed strain of 1% and a strain rate change (jump) test. It was deduced from the high strain rate sensitivity exponent of 0.08 and small activation volume of 12b3 that both dislocation and grain boundary activities would take place in this nc Cu, which explained the nearly perfect plasticity observed in the tensile test.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献