Author:
Benamara M,Rocher A,Laporte A,Sarrabayrouse G,Lescouzères L,PeyreLavigne A,Fnaiech M,Claverie A
Abstract
AbstractThe so-called Direct Wafer Bonding (DWB) technique opens new possibilities for the electronic industry but still suffers from the poor knowledge we have of the microstructure of these interfaces and hence of their electrical activity. In this work, we have extensively used Transmission Electron Microscopy techniques in plan-view and cross-section to identify the structure of the interfaces found between two bonded silicon wafers. The general structure of these interfaces is that of a perfect grain boundary and evidently depends on the misorientation between the two bonded wafers. A twist component in the range 0>θ>13˚ creates a square network of pure screw dislocation whereas an unavoidable tilt component (<0.5˚) is compensated by a periodic array of 60˚ dislocation lines perpendicular to the tilt direction. Therefore, the regularity of these networks can be disrupted by the presence of steps (of up to several nanometers) in the interface plane. Silicon oxide precipitates are seen heterogeneously distributed on the interface with preferential nucleation sites on the dislocations.
Publisher
Springer Science and Business Media LLC
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献