MOCVD ZnS:Mn Films: Grain Size Distribution and Crystal Structure as a Function of the Growth Parameters

Author:

Dunn Kathleen A.,Dovidenko Katharine,Topol Anna W.,Oktyabrsky Serge R.,Kaloyeros Alain E.

Abstract

ABSTRACTZinc sulfide doped with manganese is extensively used for thin film electroluminescent device applications. In order to assess the key material and process challenges, ZnS:Mn layers were fabricated by metalorganic chemical vapor deposition in the 250°-500°C range on an AlTiO/InSnO/glass stack. The microstructure of the ZnS:Mn films was examined by Transmission Electron Microscopy (TEM) as part of a larger study which fully characterizes these films by a variety of structural and chemical characterization techniques, including Rutherford Backscattering, Secondary Ion Mass Spectroscopy, Atomic Force Microscopy, Scanning Electron Microscopy and X-ray Diffraction. For all the growth conditions, the films were found to be polycrystalline having predominantly 2H hexagonal ZnS structure. The ZnS grains are found to grow columnar as the film thickness increases, also widening in the direction parallel to the substrate surface and reaching the 100 - 200 nm average lateral size at the 650 nm film thickness. The presence of the 8H ZnS polytype was detected in the low-temperature ZnS:Mn films by TEM selected area electron diffraction and confirmed by X-ray diffraction analysis. Dark field TEM imaging correlated this 8H ring with very small (∼2.5 nm) grains present throughout the low temperature film with a slightly higher density at the film/substrate interface. The 700°C post-deposition annealing was found to initiate a solid state transformation to the cubic (3C) ZnS crystal structure, and resulted in an average grain size of ∼250 nm at the surface of the annealed film.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3