Modeling of Silicon Deposition Yield at Low Temperature by ArF Excimer Laser Photolysis of Disilane

Author:

Fowler B.,Lian S.,Krishnan S.,Li C.,Jung L.,Samara D.,Manna I.,Banerjee S.

Abstract

ABSTRACTNon-thermal Chemical Vapor Deposition (CVD) such as laser-enhanced photo-CVD of Si at low temperatures is important for Si-based heterostructures and doping superlattices. Growth kinetic models must be developed to allow these processes to be fully exploited. Intrinsic Si epitaxial layers were deposited at low substrate temperatures of 250-350ºC using the 193 nm output of an ArF excimer laser to directly dissociate Si2H6. The intrinsic film deposition rate can be described by a kinetic model that considers the gas phase reactions of the primary photolysis products and diffusion ofsilicon-bearing molecules to the growth surface. With the laser beam tangential to the substrate surface, growth rates as a function of beam-to-substrate distance have been characterized and indicate that very little gas phase reaction occurs for the dominant Si growth precursor. In order for intrinsic film deposition to result solely from Si2H6 photolysis products, a sticking coefficient ≥ 0.6 must be assigned to the dominant growth precursor in order to fit the observed yield of Si deposited in the films, indicating that the dominant growth precursor in 193 nm Si2H6 photolysis is perhaps H2SiSiH2.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3