Abstract
Periodic structures are generated by solid state reaction between platinum (Pt) and silicon carbide (SiC). At temperatures above 900°C, periodic structures consisting of alternating layers of platinum silicides and carbon are produced in the diffusion zone. The composition profile across the diffusion zone and the chemistry of the periodic structures are investigated by scanning electron microscopy (SEM), scanning Auger microscopy (SAM), x-ray diffraction (XRD), and laser Raman microprobe. The formation of the platinum silicides causes an interfacial melting between Pt and SiC. X-ray diffraction indicates that Pt3Si is formed at 900°C, while Pt2Si is formed at 1000 °C. Laser Raman spectroscopy indicates that carbon is in either an amorphous state or a highly ordered graphitic state, depending upon its location from the reaction interface. The mechanism of formation of the periodic structure is discussed in terms of the solubility of carbon in platinum silicide during the solidification process.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献