Hydrogen-alkali-metal-graphite ternary intercalation compounds

Author:

Enoki Toshiaki,Miyajima Seiichi,Sano Mizuka,Inokuchi Hiroo

Abstract

Alkali-metal-graphite intercalation compounds (alkali-metal-GIC's) absorb hydrogen in two ways: physisorption and chemisorption. Hydrogen uptake through the physisorption process occurs at low temperatures below about 200 K in higher stage alkali-metal-GIC's, where hydrogen molecules are stabilized to form a two-dimensional condensed phase in the galleries of the graphite sheets. The concentration of absorbed hydrogen molecules is saturated at a rate of H2/alkali metal atom ∼2. The hydrogen physisorption shows a strong isotope effect and a swelling effect on c-axis lattice expansion. In the case of hydrogen uptake through the chemisorption process, dissociated hydrogen species are stabilized in the intercalate spaces. The activity of the chemisorption increases in the order Cs < Rb < K. The introduction of hydrogen generates a charge transfer from the host alkali metal GIC's to the hydrogen since hydrogen has strong electron affinity. The hydrogenated potassium-GIC's have intercalates consisting of K+-H-K+ triple atomic layer sandwiches which are inserted between metallic graphite sheets. The inserted two-dimensional hydrogen layer is suggested to consist of H ions with a weakly metallic nature. The superconductivity of the hydrogenated potassium-GIC is also discussed in terms of the change in the electronic and lattice dynamical properties by hydrogen uptake. The hydrogen-absorption in alkali-metal-GIC's is an interesting phenomenon in comparison with that in transition metal hydrides from the point of hydrogen storage. The hydrogen-alkali-metal-ternary GIC's obtained from hydrogen absorption have novel electronic properties and lattice structures which provide attractive problems for GIC research. The studies of hydrogen-alkali-metal ternary GIC's are reviewed in this article.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3