Author:
Larkin D. J.,Interrante L. V.,Bose A.
Abstract
A CVD process has been developed for coating Textron-Avco SCS-6 SiC fiber with yttria. Both Y(fod)3·H2O and Y(thd)3 (fod = 1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-4,6-octanedionato; thd = 2,2,6,6-tetramethyl-3,5-heptanedionato) were examined as potential Y2O3 CVD precursors. Analysis of the deposits by Auger spectroscopy indicated significant F and C'incorporation in the case of Y(fod)3 · H2O whereas, under appropriate conditions, Y(thd)3 gave a deposit which was essentially free of C and other impurities. GCFTIR analysis of the volatile products of the CVD process indicated isobutylene, tetrafluoroethylene, 1,1-difluoroethylene, fluoroform, and fluoroethylene for Y(fod)3 · H2O and mainly isobutylene and propylene for Y(thd)3. The precursor Y(thd)3 was chosen to deposit 1–2 μm of yttria on short lengths of silicon carbide fibers. The coated fibers were then incorporated into a nickel aluminide (Ni3Al) matrix by reactive sintering, with yttria affording protection from the known SiC + 2Ni ⇉ Ni2Si + C degradation process. The SiC/Ni3Al composites, before and after annealing at 1000 °C for up to 100 h, were studied by using SEM and EMPA to determine the extent of reaction. With the exception of certain portions of the fibers that were inadequately coated with yttria, complete protection of the fibers was indicated.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献