Investigation of Novel Opuntia Ficus-indica Mucilage Nanofiber Membrane Filtration for Water Systems

Author:

Thomas Sylvia W.,Devisetty Manopriya,Katakam Hruday Chand,Perez Samuel,Guo Fei,Stebbins Daniela,Alcantar Norma,Muppaneni Rasudha

Abstract

ABSTRACTNanofiltration technology is being investigated as a cost-effective and environmentally acceptable mechanism of sustaining industrial and public water systems. Nanofiber membranes are part of the family of filtration devices being used to remove inorganics and organics from water systems. This study investigates the use of the natural material, Opuntia ficus-indica (Ofi) cactus mucilage, as a tool for nanofiber membrane filtration. Mucilage is a natural, non-toxic, bio-compatible, biodegradable, inexpensive and abundant material. Mucilage is a clear colorless substance comprised of proteins, mono-saccharides, and polysaccharides. It also contains organic species, which give it the capacity to interact with metals, cations and biological substances promoting flocculation for removing arsenic, bacteria, E. coli, and other particulates from drinking water. This natural material has the potential to be used as a sustainable method for water filtration and contaminant sensing. Therefore, mucilage nanofiber membranes were electrospun with volume ratios of polyvinyl alcohol (PVA) and polystyrene (PS) to mucilage comparing the interaction of non-polar solvents. Atomic Fluorescence Spectrometry (AFS) from PSAnalytical was used to evaluate electrospun nanofiber membranes made from volume ratios ranging from 30:70 to 70:30 of mucilage: polyvinyl alcohol, mucilage: polystyrene-D-limonene, and mucilage: polystyrene–toluene in different proportions. The mucilage nanofiber membranes were used as filtration devices for 50 ppb arsenic solutions. Arsenic, being a toxic substance, acts as a deadly poison in water systems and has plagued societal preservation for centuries. The total arsenic content in the samples were measured before and after treatment. Comparative tests were also performed using 1) coated and non-coated GVWP 0.22 µm and 0.45 µm filters from Millipore and 2) columnar flow through Pasteur glass pipets filled with 0.5 g of pre-washed sand from Fisher Scientific and 0.01 g of mucilage nanofibers. Results show mucilage: polystyrene nanofiber membrane filters were capable of removing arsenic from test solutions, in terms of the percentage of arsenic removed. These data elucidate that mucilage nanofiber membranes have the potential to serve as the basis for the next generation of economically sustainable filtration devices that make use of a natural non-toxic material for sustainable water systems.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference14 articles.

1. Application of direct tracking method for measuring electrospun nanofiber diameter

2. [4] Pais Yanay , “Fabrication and Characterization of Electrospun Cactus Mucilage Nanofibers” (2011). Graduate Theses and Dissertations.

3. Determination of arsenic concentration and distribution in the Floridan Aquifer System

4. [11] Cárdenas A. and Goycoolea F.M. , “Rheology and Aggregation of Cactus ( Opuntia ficus-indica ) Mucilage in Solution,” 1997, pp. 152–159.

5. Removing Heavy Metals In Water: The Interaction of Cactus Mucilage and Aresenate (As (V));Fox Dawn;Environmental Science and Technology,2012

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3