Study of Growth and Characterization of Fe-Catalyzed β-Ga2O3 Nanowires

Author:

Kumar Sudheer,Tessarek C.,Hähnel A.,Christiansen S.,Singh R.

Abstract

ABSTRACTIn the present study, Fe as a catalyst was used to grow single crystalline monoclinic gallium oxide (β-Ga2O3) nanowires using chemical-vapor-deposition method. The morphology, structure and luminescence properties of the as-grown β-Ga2O3 nanowires were investigated using various characterization techniques. The diameter of the as-grown nanowires was in the range of 50 to 100 nm, and the lengths up to tens of micrometers. The structural investigation of the nanowires was carried out using X-ray diffraction that showed monoclinic phase of Ga2O3. Further, the transmission electron microscope (TEM) investigations along with selected area diffraction pattern revealing single crystalline nature of the nanowires. The as-grown β-Ga2O3 nanowires had preferred orientation along [1-1-1] direction. The high resolution TEM image showed regular arrangement of atoms and the lattice spacing between (1-1-1) planes was around 0.266 nm. The luminescence properties of the as-grown nanowires were measured using cathodoluminescence (CL) spectroscopy. The CL measurements of β-Ga2O3 nanowires revealed a strong broad UV-blue emission band and a weak red emission band.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3