Author:
Heyman James N.,Sahu Ayaskanta,Coates Nelson E.,Ehmann Brittany,Urban Jeffery J.
Abstract
ABSTRACTWe report static and time-resolved terahertz (THz) conductivity measurements of a highperformance thermoelectric material containing tellurium nanowires in a PEDOT:PSS matrix. Composites were made with and without sulfur passivation of the nanowires surfaces. The material with sulfur linkers (TeNW/PD-S) is less conductive but has a longer carrier lifetime than the formulation without (TeNW/PD). We find real conductivities at f = 1THz of σTeNW/PD = 160 S/cm and σTeNW/PD-S = 5.1 S/cm. These values are much larger than the corresponding DC conductivities, suggesting DC conductivity is limited by structural defects. The free-carrier lifetime in the nanowires is controlled by recombination and trapping at the nanowire surfaces. We find surface recombination velocities in bare tellurium nanowires (22m/s) and TeNW/PD-S (40m/s) that are comparable to evaporated tellurium thin films. The surface recombination velocity in TeNW/PD (509m/s) is much larger, indicating a higher interface trap density.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献