Understanding the 1600°C Fuel Temperature Limit of TRISO Coated Fuel Particles

Author:

Trejo Félix Cancino,Padilla Mariana Sáenz,López-Honorato Eddie

Abstract

ABSTRACTThe TRISO (tristructural isotropic) coated fuel particle is made of a uranium oxide kernel coated with three layers of pyrolytic carbon and one of silicon carbide. This fuel, originally used in High Temperature Reactors, has been proposed as accident tolerant fuel for Light Water Reactors after the accident in Fukushima. Although this fuel is capable of retaining fission products within the particle up to 1600°C, little is known on the origin of this temperature limit. Therefore, in order to increase the safety of this type of fuel, it is necessary to understand the origin of the degradation of the materials that compose this fuel. We have studied the effect of temperature on the microstructure and diffusion of silver in pyrolytic carbon coatings produced by fluidized bed chemical vapor deposition. Samples were heat treated at 1000°C, 1400°C and 1700°C for 200 hrs. under inert atmosphere. The effect of temperature on the microstructure and silver diffusion behavior were analyzed by Raman spectroscopy, X-Ray diffraction, optical microscopy, SEM and TEM. We observed that the microstructure of PyC changed drastically above 1400°C, showing the increase in anisotropy and the re-orientation of the graphene planes. The diffusion of silver appears to be also correlated with this change in microstructure.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Core analysis of spectral shift operated SmAHTR;Annals of Nuclear Energy;2019-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3