Author:
Tafti Mohsen Y.,Saleemi Mohsin,Johnsson Mats,Jacquot Alexandre,Toprak Muhammet S.
Abstract
ABSTRACTDepending on their application temperature thermoelectric (TE) materials are classified in three main categories; as low (up to 250°C), intermediate (up to 550°C) and high (above 600°C) temperature. Currently, Skutterudites (CoSb3) based materials have shown promising results in the intermediate temperature range (300-500°C). This family of material is highly suitable for automotive, marine transportation and industrial power generation applications to recover the waste heat from the exhaust and generate electricity. Conventional TE modules need p- and n-type semiconductor materials and for the skutterudite family, iron (Fe) has proven to be among the best candidates for the substitution of cobalt sites. Additionally, rare earths are introduced as rattlers in the crystal cages of the skutterudite to decrease the thermal conductivity, thus improving the figure of merit ZT of the TE material. For practical application for device fabrication, stability of these materials is of great importance. Compositional stability is being addressed as the material decomposes above certain temperature. Temperature dependent x-ray diffraction study was performed on Fe substituted, Yb-filled skutterudites, using Beam Line I711 at MAX LAB, to observe the crystal structure as a function of temperature. Diffraction patterns were collected from room temperature up to 500°C by utilizing Huber furnace. The results show success in filling process showing almost 80% reduction of the thermal conductivity from bulk. Additionally the thermal expansion coefficient value was within the average value for skutterudites which proves practical application of this powder for industrial applications.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献