Low-Temperature Processed Hybrid Organic/Silicon Solar Cells with Power Conversion Efficiency up to 6.5%

Author:

Weingarten M.,Zweipfennig T.,Vescan A.,Kalisch H.

Abstract

ABSTRACTHybrid organic/silicon heterostructures have become of great interest for photovoltaic application due to their promising features (e.g. easy fabrication in a low-temperature process) for cost-effective photovoltaics. This work is focused on solar cells with a hybrid heterojunction between the polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) and n-doped monocrystalline silicon. As semi-transparent top contact, a thin (15 nm) Au layer was employed. Devices with different P3HT thicknesses were processed by spin-casting and compared with a reference Au/n-Si Schottky diode solar cell.The current density-voltage (J-V) measurements of the hybrid devices show a significant increase in open-circuit voltage (VOC) from 0.29 V up to 0.50 V for the best performing hybrid devices compared to the Schottky diode reference, while the short-circuit current density (JSC) does not change significantly. The increased VOC indicates that P3HT effectively reduces the reverse electron current into the gold contact. The wavelength-dependent JSC measurements show a decreased JSC in the wavelength range of P3HT absorption. This is related to the reduced JSC generation in silicon not being compensated by JSC generation in P3HT. It is concluded that the charge generation in P3HT is less efficient than in silicon.After a thermal annealing of the hybrid P3HT/silicon solar cells, we achieved power conversion efficiencies (PCE) (AM1.5 illumination) up to 6.5% with VOC of 0.52 V, JSC of 18.6 mA/cm² and a fill factor (FF) of 67%. This is more than twice the efficiency of the reference Schottky diode.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3