Glass Degradation in Performance Assessment Models1

Author:

Ebert William L.

Abstract

ABSTRACTThe interface with reactive transport models used in performance assessment calculations is described to identify aspects of the glass waste form degradation model important to long-term predictions. These are primarily the conditions that trigger the change from the residual rate to the Stage 3 rate and the values of those rates. Although the processes triggering the change and controlling the Stage 3 rate are not yet understood mechanistically, neither appears related to an intrinsic property of the glass. The sudden and usually significant increase in the glass dissolution rate suggests the processes that trigger the increase are different than the processes controlling glass dissolution prior to that change. Application of a simple expression that was derived for mineral transformation to represent the kinetics of coupled glass dissolution and secondary phase precipitation reactions is shown to be consistent with experimental observations of Stage 3 and useful for modeling long-term glass dissolution in a complex disposal environment.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference20 articles.

1. An international initiative on long-term behavior of high-level nuclear waste glass

2. Compositional effects on long-term dissolution of borosilicate glass

3. The Long-Term Corrosion and Modeling of Two Simulated Belgian Reference High-Level Waste Glasses;Van Iseghem;Scientific Basis for Nuclear Waste Management XI. Material Research Society Symposium Proceedings,1988

4. Effects of alteration product precipitation on glass dissolution

5. 2. Jantzen C.M. (2013). Letter Report on SRNL Modeling Accelerated Leach Testing of Glass (ALTGLASS). SRNL-L3100-2013-00177; FCRD-SWF-2013-000339, Rev. 0.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parameterizing a borosilicate waste glass degradation model;npj Materials Degradation;2019-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3